6-1: Vectors in the Plane Pearson Pre-Calculus
 Day 1

Two-dimensional vector:

Component form:

Head Minus Tail (HMT) Rule:

Direction:

Magnitude:

1. Prove that $\overrightarrow{R S}$ and $\overrightarrow{P Q}$ are equivalent by showing that they represent the same vector.

$$
R=(-4,7), S=(-1,5), P=(0,0), \text { and } Q=(3,-2)
$$

Let $P=(-2,2), Q=(3,4), R=(-2,5)$, and $S=(2,-8)$. Find the component form and magnitude of the vector.
2. $\overrightarrow{R S}$
3. $2 \overrightarrow{Q S}$

Let $\boldsymbol{u}=\langle-1,3\rangle, \mathbf{v}=\langle 2,4\rangle$, and $\boldsymbol{w}=\langle 2,-5\rangle$. Find the component form of the vector.
4. $\mathbf{u}+\mathbf{v}$
5. $2 \mathbf{u}-4 \mathbf{v}$
6. Find a unit vector in the direction of the given vector $\boldsymbol{v}=\langle 1,-1\rangle$

6-1: Vectors in the Plane Pearson Pre-Calculus
 Day 2

Resolving a vector:

1. Find the unit vector in the direction of the given vector. Write your answer in (a) component form and (b) as a linear combination of the standard unit vectors \mathbf{i} and $\mathbf{j} . \mathbf{u}=\langle 2,1\rangle$
2. Find the component form of the vector v.

3. Find the magnitude and direction angle of the vector: $\langle-1,2\rangle$.
4. Find the vector \boldsymbol{v} with the given magnitude and the same direction as $\boldsymbol{u}:|\boldsymbol{v}|=2, \boldsymbol{u}=\langle 3,-3\rangle$

6-3: Parametric Equations and Motion Pearson Pre-Calculus
 Day 1

Parametric equations:

Parametric curve:

1. Complete the table for the parametric equations and plot the corresponding points. $x=\cos t, y=\sin t$

t	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	2π
x					
y					

2. Eliminate the parameter and identify the graph of the parametric curve: $x=5-3 t, y=2+t,-1 \leq t \leq 3$
3. Find a parametrization for the curve: The line through the points $(-2,5)$ and $(4,2)$

6-3: Parametric Equations and Motion Pearson Pre-Calculus
 Day 2

Eliminate the parameter and identify the graph of the parametric curve.

1. $x=1-2 t, y=2-t,-\infty<t<\infty$
2. $x=t^{2}-2, y=3 t$

6-4: Polar Coordinate System
 Pearson Pre-Calculus
 Day 1

Polar coordinate system:

Find all Polar Coordinates of a Point:

Coordinate Conversion:

1. The polar coordinates of a point are given. Find its rectangular coordinates.

Plot the point with the given polar coordinates.
2. $\left(3, \frac{4 \pi}{3}\right)$
3. $\left(-2,120^{\circ}\right)$

Find the rectangular coordinates of the point with given polar coordinates.
4. $\left(1.5, \frac{7 \pi}{3}\right)$
5. $\left(2,270^{\circ}\right)$

6-4: Polar Coordinate System
 Pearson Pre-Calculus
 Day 2

Polar coordinates of point P are given. Find all of its polar coordinates.

1. $P=\left(2, \frac{\pi}{6}\right)$
2. $P=\left(1.5,-20^{\circ}\right)$

Convert the polar equation to rectangular form and identify the graph. Support your answer by graphing the polar equation.

1. $r=3 \sec \theta$
2. $r \csc \theta=1$

Convert the rectangular equation to polar form.
3. $2 x-3 y=5$
4. $(x-3)^{2}+y^{2}=9$

7-2: Matrix Algebra Pearson Pre-Calculus Day 1

$m \mathrm{x} n$ matrix:
$\operatorname{Sum} A+B$:

Difference $A-B$:

Square Matrix:

Matrix Multiplication:

Determine the order of the matrix. Indicate whether the matrix is square.

1. $\left[\begin{array}{cc}5 & 6 \\ -1 & 2 \\ 0 & 0\end{array}\right]$

Find (a) $\mathrm{A}+\mathrm{B}$ (b) $\mathrm{A}-\mathrm{B}$ (c) 3 A and (d) $2 \mathrm{~A}-3 \mathrm{~B}$
2. $A=\left[\begin{array}{cccc}5 & -2 & 3 & 1 \\ -1 & 0 & 2 & 2\end{array}\right], B=\left[\begin{array}{cccc}-2 & 3 & 1 & 0 \\ 4 & 0 & -1 & -2\end{array}\right]$

Use definition of matrix multiplication to find (a) AB and (b) BA
3. $A=\left[\begin{array}{ccc}2 & 0 & 1 \\ 1 & 4 & -3\end{array}\right], B=\left[\begin{array}{cc}1 & 2 \\ -3 & 1 \\ 0 & -2\end{array}\right]$

7-2: Matrix Algebra Pearson Pre-Calculus Day 2

Find (a) AB (b) BA

1. $A=\left[\begin{array}{cc}-1 & 2 \\ 3 & 4\end{array}\right], B=\left[\begin{array}{ll}-3 & 5\end{array}\right]$
2. $A=\left[\begin{array}{cc}-1 & 3 \\ 0 & 1 \\ 1 & 0 \\ -3 & -1\end{array}\right], B=\left[\begin{array}{cc}5 & -6 \\ 2 & 3\end{array}\right]$

Solve for a and b.
3. $\left[\begin{array}{cc}2 & a-1 \\ 2 & 3 \\ -1 & 2\end{array}\right]=\left[\begin{array}{cc}2 & -3 \\ b+2 & 3 \\ -1 & 2\end{array}\right]$
4. $\left[\begin{array}{cc}a+3 & 2 \\ 0 & 5\end{array}\right]=\left[\begin{array}{cc}4 & 2 \\ 0 & b-1\end{array}\right]$

7-2: Matrix Algebra Pearson Pre-Calculus Day 3

Inverse of a matrix:

Discriminant:

1. Verify that the matrices are inverses of each other: $A=\left[\begin{array}{cc}3 & -2 \\ -1 & 1\end{array}\right], B=\left[\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right]$
2. Show that the matrix does not have an inverse: $A=\left[\begin{array}{ll}6 & 3 \\ 2 & 1\end{array}\right]$

Determine whether the matrix has an inverse. If so, find the inverse matrix.
3. $A=\left[\begin{array}{ll}3 & 1 \\ 4 & 2\end{array}\right]$
4. $B=\left[\begin{array}{ccc}1 & 2 & -1 \\ 2 & -1 & 3 \\ -1 & 0 & 1\end{array}\right]$

