6-1: Vectors in the Plane Pearson Pre-Calculus Day 1

Two-dimensional vector:

Component form:

Head Minus Tail (HMT) Rule:

Direction:

Magnitude:

1. Prove that \overrightarrow{RS} and \overrightarrow{PQ} are equivalent by showing that they represent the same vector.

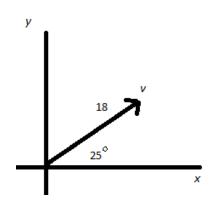
R = (-4, 7), S = (-1, 5), P = (0, 0), and Q = (3, -2)

Let P = (-2,2), Q = (3,4), R = (-2,5), and S = (2,-8). Find the component form and magnitude of the vector.

2. \overrightarrow{RS} 3. $2\overrightarrow{QS}$

Let $u = \langle -1, 3 \rangle$, $v = \langle 2, 4 \rangle$, and $w = \langle 2, -5 \rangle$. Find the component form of the vector.

4. u + v 5. 2u - 4v


6. Find a unit vector in the direction of the given vector $\boldsymbol{v} = \langle 1, -1 \rangle$

6-1: Vectors in the Plane Pearson Pre-Calculus Day 2

Resolving a vector:

1. Find the unit vector in the direction of the given vector. Write your answer in (a) component form and (b) as a linear combination of the standard unit vectors i and j. $\mathbf{u} = \langle 2, 1 \rangle$

2. Find the component form of the vector v.

3. Find the magnitude and direction angle of the vector: $\langle -1, 2 \rangle$.

4. Find the vector v with the given magnitude and the same direction as $u: |v| = 2, u = \langle 3, -3 \rangle$

6-3: Parametric Equations and Motion Pearson Pre-Calculus Day 1

Parametric equations:

Parametric curve:

1. Complete the table for the parametric equations and plot the corresponding points. $x = \cos t$, $y = \sin t$

t	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
x					
у					

2. Eliminate the parameter and identify the graph of the parametric curve: x = 5 - 3t, y = 2 + t, $-1 \le t \le 3$

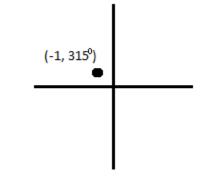
3. Find a parametrization for the curve: The line through the points (-2, 5) and (4, 2)

6-3: Parametric Equations and Motion Pearson Pre-Calculus Day 2

Eliminate the parameter and identify the graph of the parametric curve.

1. x = 1 - 2t, y = 2 - t, $-\infty < t < \infty$

2. $x = t^2 - 2, y = 3t$


6-4: Polar Coordinate System Pearson Pre-Calculus Day 1

Polar coordinate system:

Find all Polar Coordinates of a Point:

Coordinate Conversion:

1. The polar coordinates of a point are given. Find its rectangular coordinates.

Plot the point with the given polar coordinates.

2. $(3, \frac{4\pi}{3})$

3. $(-2, 120^{\circ})$

Find the rectangular coordinates of the point with given polar coordinates.

 $4.\left(1.5,\frac{7\pi}{3}\right)$

5. $(2, 270^{o})$

6-4: Polar Coordinate System Pearson Pre-Calculus Day 2

Polar coordinates of point P are given. Find all of its polar coordinates.

1.
$$P = (2, \frac{\pi}{6})$$
 2. $P = (1.5, -20^{\circ})$

Convert the polar equation to rectangular form and identify the graph. Support your answer by graphing the polar equation.

1. $r = 3 \sec \theta$

2. $r \csc \theta = 1$

Convert the rectangular equation to polar form.

3. 2x - 3y = 5

4.
$$(x-3)^2 + y^2 = 9$$

7-2: Matrix Algebra Pearson Pre-Calculus Day 1

m x *n* matrix:

Sum *A* + *B*:

Difference *A* – *B*:

Square Matrix:

Matrix Multiplication:

Determine the order of the matrix. Indicate whether the matrix is square.

 $1.\begin{bmatrix}5&6\\-1&2\\0&0\end{bmatrix}$

Find (a) A + B (b) A - B (c) 3A and (d) 2A - 3B

2.
$$A = \begin{bmatrix} 5 & -2 & 3 & 1 \\ -1 & 0 & 2 & 2 \end{bmatrix}, B = \begin{bmatrix} -2 & 3 & 1 & 0 \\ 4 & 0 & -1 & -2 \end{bmatrix}$$

Use definition of matrix multiplication to find (a) AB and (b) BA

3.
$$A = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 4 & -3 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 \\ -3 & 1 \\ 0 & -2 \end{bmatrix}$$

7-2: Matrix Algebra Pearson Pre-Calculus Day 2

Find (a) AB (b) BA

1.
$$A = \begin{bmatrix} -1 & 2 \\ 3 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} -3 & 5 \end{bmatrix}$

2.
$$A = \begin{bmatrix} -1 & 3 \\ 0 & 1 \\ 1 & 0 \\ -3 & -1 \end{bmatrix}$$
, $B = \begin{bmatrix} 5 & -6 \\ 2 & 3 \end{bmatrix}$

Solve for *a* and *b*.

$$3.\begin{bmatrix} 2 & a-1 \\ 2 & 3 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & -3 \\ b+2 & 3 \\ -1 & 2 \end{bmatrix}$$

4.
$$\begin{bmatrix} a+3 & 2\\ 0 & 5 \end{bmatrix} = \begin{bmatrix} 4 & 2\\ 0 & b-1 \end{bmatrix}$$

7-2: Matrix Algebra Pearson Pre-Calculus Day 3

Inverse of a matrix:

Discriminant:

1. Verify that the matrices are inverses of each other: $A = \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$

2. Show that the matrix does not have an inverse: $A = \begin{bmatrix} 6 & 3 \\ 2 & 1 \end{bmatrix}$

Determine whether the matrix has an inverse. If so, find the inverse matrix.

3.
$$A = \begin{bmatrix} 3 & 1 \\ 4 & 2 \end{bmatrix}$$

$$4. B = \begin{bmatrix} 1 & 2 & -1 \\ 2 & -1 & 3 \\ -1 & 0 & 1 \end{bmatrix}$$